Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446015

RESUMO

In this study, metagenomic sequence data was used to investigate the phytoplasma taxonomic diversity in vegetable-growing regions across Australia. Metagenomic sequencing was performed on 195 phytoplasma-positive samples, originating either from historic collections (n=46) or during collection efforts between January 2015 and June 2022 (n=149). The sampled hosts were classified as crop (n=155), weed (n=24), ornamental (n=7), native plant (n=6), and insect (n=3) species. Most samples came from Queensland (n=78), followed by Western Australia (n=46), the Northern Territory (n=32), New South Wales (n=17), and Victoria (n=10). Of the 195 draft phytoplasma genomes, 178 met our genome criteria for comparison using an average nucleotide identity approach. Ten distinct phytoplasma species were identified and could be classified within the 16SrII, 16SrXII (PCR only), 16SrXXV, and 16SrXXXVIII phytoplasma groups, which have all previously been recorded in Australia. The most commonly detected phytoplasma taxa in this study were species and subspecies classified within the 16SrII group (n=153), followed by strains within the 16SrXXXVIII group ('Ca. Phytoplasma stylosanthis'; n=6). Several geographic- and host-range expansions were reported, as well as mixed phytoplasma infections of 16SrII taxa and 'Ca. Phytoplasma stylosanthis'. Additionally, six previously unrecorded 16SrII taxa were identified, including five putative subspecies of 'Ca. Phytoplasma australasiaticum' and a new putative 16SrII species. PCR and sequencing of the 16S rRNA gene was a suitable triage tool for preliminary phytoplasma detection. Metagenomic sequencing, however, allowed for higher-resolution identification of the phytoplasmas, including mixed infections, than was afforded by only direct Sanger sequencing of the 16S rRNA gene. Since the metagenomic approach theoretically obtains sequences of all organisms in a sample, this approach was useful to confirm the host family, genus, and/or species. In addition to improving our understanding of the phytoplasma species that affect crop production in Australia, the study also significantly expands the genomic sequence data available in public sequence repositories to contribute to phytoplasma molecular epidemiology studies, revision of taxonomy, and improved diagnostics.


Assuntos
Coinfecção , Phytoplasma , Verduras , Phytoplasma/genética , RNA Ribossômico 16S/genética , Metagenoma , Vitória
2.
Microbiol Spectr ; 11(6): e0266323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823658

RESUMO

IMPORTANCE: Globally, viral diseases impair the growth and vigor of cultivated crops such as grains, leading to a significant reduction in quality, marketability, and competitiveness. As an island nation, Australia has a distinct advantage in using its border to prevent the introduction of damaging viruses, which threaten the continental agricultural sector. However, breeding programs in Australia rely on imported seeds as new sources of genetic diversity. As such, it is critical to remain vigilant in identifying new and emerging viral pathogens, by ensuring the availability of accurate genomic diagnostic tools at the grain biosecurity border. High-throughput sequencing offers game-changing opportunities in biosecurity routine testing. Genomic results are more accurate and informative compared to traditional molecular methods or biological indexing. The present work contributes to strengthening accurate phytosanitary screening, to safeguard the Australian grains industry, and expedite germplasm release to the end users.


Assuntos
Fabavirus , Vicia faba , Vicia faba/genética , Austrália , Fabavirus/genética , Análise de Sequência de RNA
3.
PeerJ ; 11: e15831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601253

RESUMO

Background: The Australian citrus industry remains one of the few in the world to be unaffected by the African and the Asian citrus psyllids, Trioza erytreae Del Guercio and Diaphorina citri Kuwayama, respectively, and the diseases their vectored bacteria can cause. Surveillance, early detection, and strict quarantine measures are therefore fundamental to safeguard Australian citrus. However, long-term targeted surveillance for exotic citrus pests can be a time-consuming and expensive activity, often relying on manually screening large numbers of trap samples and morphological identification of specimens, which requires a high level of taxonomic knowledge. Methods: Here we evaluated the use of non-destructive insect metabarcoding for exotic pest surveillance in citrus orchards. We conducted an 11-week field trial, between the months of December and February, at a horticultural research farm (SuniTAFE Smart Farm) in the Northwest of Victoria, Australia, and processed more than 250 samples collected from three types of invertebrate traps across four sites. Results: The whole-community metabarcoding data enabled comparisons between different trapping methods, demonstrated the spatial variation of insect diversity across the same orchard, and highlighted how comprehensive assessment of insect biodiversity requires use of multiple complimentary trapping methods. In addition to revealing the diversity of native psyllid species in citrus orchards, the non-targeted metabarcoding approach identified a diversity of other pest and beneficial insects and arachnids within the trap bycatch, and recorded the presence of the triozid Casuarinicola cf warrigalensis for the first time in Victoria. Ultimately, this work highlights how a non-targeted surveillance approach for insect monitoring coupled with non-destructive DNA metabarcoding can provide accurate and high-throughput species identification for biosecurity and biodiversity monitoring.


Assuntos
Citrus , Hemípteros , Animais , Humanos , Hemípteros/genética , Biosseguridade , Insetos/genética , Vitória , Ligante de CD40
4.
Sci Rep ; 13(1): 10895, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407637

RESUMO

Diaphorina citri Kuwayama, also known as the Asian citrus psyllid (ACP), can vector the bacterium Candidatus Liberibacter asiaticus (CLas), agent of Huanglongbing (HLB): an incurable disease affecting citrus trees worldwide. In citrus growing regions where ACP and HLB are absent, such as Australia, the risk of an incursion and consequent economic damage to citrus industries make this psyllid one of the top-priority pests. Due to ACP's small dimensions and the generally poorly studied native psylloid fauna worldwide, morphological identification of this insect to distinguish it from harmless species is challenging, especially in the field, and with immature, partial or damaged specimens. To allow rapid and efficient detection of ACP in the field, we designed and optimised a new Loop-mediated isothermal amplification (LAMP) assay for the detection of D. citri based on the mitochondrial 16S locus. The optimised ACP 16S LAMP assay produced amplification from D. citri samples within 13.3 ± 3.6 min, with an anneal derivative of ~ 78.5 °C. A synthetic gBlock gene fragment was also developed to be used as positive control for the new LAMP assay with a different anneal derivative of ~ 83 °C. An existing commercially available LAMP assay for detection of the bacterium CLas was also tested in this study on ACP DNA. The ACP 16S LAMP assay we developed and tested here provides a valuable new in-field compatible tool that can allow early detections of ACP, enabling a quick biosecurity response, and could potentially be adopted by a wide range of users, from farmers to agronomists and from researchers to industry.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Hemípteros/microbiologia , Citrus/microbiologia , Rhizobiaceae/genética , Doenças das Plantas/microbiologia , Liberibacter
5.
Sci Rep ; 13(1): 11931, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488147

RESUMO

Varroa mites are serious pests of European honeybees (Apis mellifera). For detection of Varroa mite, a new molecular LAMP-based assay has been developed, which retains the body of the mite intact for morphological identification. Six novel Varroa LAMP primers were designed from existing DNA sequences of the COI locus to target V. destructor and V. jacobsoni, providing the ability to tell them apart from other non-target beehive associated mite and insect species. This LAMP assay is specific in detecting these Varroa species and has been tested on specimens originating from multiple countries. It produces amplification of V. destructor and V. jacobsoni in 16 ± 3.4 min with an anneal derivative of 78 ± 0.5 °C whilst another Varroa species,V. underwoodi, showed late amplification. A gBlock gene fragment, used here as a positive control has a different anneal derivative of 80 °C. Three non-destructive DNA extraction methods (HotShot, QuickExtract and Xtract) were tested and found to be suitable for use in the field. The LAMP assay was sensitive to very low levels of Varroa DNA, down to 0.24 picogram (~ 1 × 10 copies/µL of Varroa gBlock). This is a new molecular tool for rapid and accurate detection and identification of Varroa mites for pest management, in areas where these mites do not occur.


Assuntos
Varroidae , Animais , Abelhas , Bioensaio , Primers do DNA
6.
Parasit Vectors ; 16(1): 186, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280650

RESUMO

BACKGROUND: Ross River virus (RRV) is Australia's most common and widespread mosquito-transmitted arbovirus and is of significant public health concern. With increasing anthropogenic impacts on wildlife and mosquito populations, it is important that we understand how RRV circulates in its endemic hotspots to determine where public health efforts should be directed. Current surveillance methods are effective in locating the virus but do not provide data on the circulation of the virus and its strains within the environment. This study examined the ability to identify single nucleotide polymorphisms (SNPs) within the variable E2/E3 region by generating full-length haplotypes from a range of mosquito trap-derived samples. METHODS: A novel tiled primer amplification workflow for amplifying RRV was developed with analysis using Oxford Nanopore Technology's MinION and a custom ARTIC/InterARTIC bioinformatic protocol. By creating a range of amplicons across the whole genome, fine-scale SNP analysis was enabled by specifically targeting the variable region that was amplified as a single fragment and established haplotypes that informed spatial-temporal variation of RRV in the study site in Victoria. RESULTS: A bioinformatic and laboratory pipeline was successfully designed and implemented on mosquito whole trap homogenates. Resulting data showed that genotyping could be conducted in real time and that whole trap consensus of the viruses (with major SNPs) could be determined in a timely manner. Minor variants were successfully detected from the variable E2/E3 region of RRV, which allowed haplotype determination within complex mosquito homogenate samples. CONCLUSIONS: The novel bioinformatic and wet laboratory methods developed here will enable fast detection and characterisation of RRV isolates. The concepts presented in this body of work are transferable to other viruses that exist as quasispecies in samples. The ability to detect minor SNPs, and thus haplotype strains, is critically important for understanding the epidemiology of viruses their natural environment.


Assuntos
Infecções por Alphavirus , Culicidae , Sequenciamento por Nanoporos , Animais , Humanos , Vírus do Rio Ross/genética , Genômica
7.
Viruses ; 15(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992452

RESUMO

The detection of cucumber green mottle mosaic (CGMMV) in the Northern Territory (NT), Australia, in 2014 led to the introduction of strict quarantine measures for the importation of cucurbit seeds by the Australian federal government. Further detections in Queensland, Western Australia (WA), New South Wales and South Australia occurred in the period 2015-2020. To explore the diversity of the current Australian CGMMV population, 35 new coding sequence complete genomes for CGMMV isolates from Australian incursions and surveys were prepared for this study. In conjunction with published genomes from the NT and WA, sequence, phylogenetic, and genetic variation and variant analyses were performed, and the data were compared with those for international CGMMV isolates. Based on these analyses, it can be inferred that the Australian CGMMV population resulted from a single virus source via multiple introductions.


Assuntos
Citrullus , Cucumis sativus , Tobamovirus , Filogenia , Biosseguridade , Tobamovirus/genética , Northern Territory , Doenças das Plantas/prevenção & controle
8.
Viruses ; 14(12)2022 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-36560765

RESUMO

Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.


Assuntos
Infecções por Arbovirus , Arbovírus , Culicidae , Animais , Humanos , Arbovírus/genética , Filogenia , Mosquitos Vetores , Vitória
9.
Plants (Basel) ; 11(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297740

RESUMO

Rapid and reliable detection tools are essential for disease surveillance and outbreak management, and genomic data is essential to determining pathogen origin and monitoring of transmission pathways. Low virus copy number and poor RNA quality can present challenges for genomic sequencing of plant viruses, but this can be overcome by enrichment of target nucleic acid. A targeted whole genome sequencing (TWG-Seq) approach for the detection of cucumber green mottle mosaic virus (CGMMV) has been developed where overlapping amplicons generated using two multiplex RT-PCR assays are then sequenced using the Oxford Nanopore MinION. Near complete coding region sequences were assembled with ≥100× coverage for infected leaf tissue dilution samples with RT-qPCR cycle quantification (Cq) values from 11.8 to 38 and in seed dilution samples with Cq values 13.8 to 27. Consensus sequences assembled using this approach showed greater than 99% nucleotide similarity when compared to genomes produced using metagenomic sequencing. CGMMV could be confidently detected in historical seed isolates with degraded RNA. Whilst limited access to, and costs associated with second-generation sequencing platforms can influence diagnostic outputs, the portable Nanopore technology offers an affordable high throughput sequencing alternative when combined with TWG-Seq for low copy or degraded samples.

10.
Sci Rep ; 12(1): 11886, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831457

RESUMO

Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.


Assuntos
Vírus da Influenza A , Influenza Aviária , Comportamento de Utilização de Ferramentas , Animais , Austrália , Hemaglutininas , Vírus da Influenza A/genética , Aves Domésticas , Tecnologia
11.
PeerJ ; 10: e12981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228909

RESUMO

A fast and reliable method for obtaining a species-level identification is a fundamental requirement for a wide range of activities, from plant protection and invasive species management to biodiversity assessments and ecological studies. For insects, novel molecular techniques such as DNA metabarcoding have emerged as a rapid alternative to traditional morphological identification, reducing the dependence on limited taxonomic experts. Until recently, molecular techniques have required a destructive DNA extraction, precluding the possibility of preserving voucher specimens for future studies, or species descriptions. Here we paired insect metabarcoding with two recent non-destructive DNA extraction protocols, to obtain a rapid and high-throughput taxonomic identification of diverse insect taxa while retaining a physical voucher specimen. The aim of this work was to explore how non-destructive extraction protocols impact the semi-quantitative nature of metabarcoding, which alongside species presence/absence also provides a quantitative, but biased, representation of their relative abundances. By using a series of mock communities representing each stage of a typical metabarcoding workflow we were able to determine how different morphological (i.e., insect biomass and exoskeleton hardness) and molecular traits (i.e., primer mismatch and amplicon GC%), interact with different protocol steps to introduce quantitative bias into non-destructive metabarcoding results. We discuss the relevance of taxonomic bias to metabarcoding identification of insects and potential approaches to account for it.


Assuntos
Código de Barras de DNA Taxonômico , Insetos , Animais , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , DNA/genética , Biodiversidade , Plantas/genética
12.
Sci Rep ; 12(1): 1116, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064176

RESUMO

Fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), is a highly polyphagous invasive plant pest that has expanded its global geographic distribution, including recently into much of Australia. Rapid diagnostic tests are required for identification of FAW to assist subsequent management and control. We developed a new loop-mediated isothermal amplification (LAMP) assay based on the mitochondrial cytochrome c oxidase subunit I (COI) gene for accurate and timely diagnosis of FAW in the field. The specificity of the new assay was tested against a broad panel of twenty non-target noctuids, including eight other Spodoptera species. Only S. frugiperda samples produced amplification within 20 min, with an anneal derivative temperature of 78.3 ± 0.3 °C. A gBlock dsDNA fragment was developed and trialled as a synthetic positive control, with a different anneal derivative of 81 °C. The new FAW LAMP assay was able to detect FAW DNA down to 2.4 pg, similar to an existing laboratory-based real-time PCR assay. We also trialled the new FAW assay with a colorimetric master mix and found it could successfully amplify positive FAW samples in half the time compared to an existing FAW colorimetric LAMP assay. Given the high sensitivity and rapid amplification time, we recommend the use of this newly developed FAW LAMP assay in a portable real-time fluorometer for in-field diagnosis of FAW.


Assuntos
Espécies Introduzidas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Plantas/parasitologia , Spodoptera/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Insetos/genética , Larva , Spodoptera/enzimologia
13.
Pest Manag Sci ; 77(12): 5509-5521, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34363302

RESUMO

BACKGROUND: Khapra beetle (Trogoderma granarium Everts) is a significant pest of food products around the world, causing great losses of stored grain and produce, with export restrictions imposed on countries with established beetle populations. Khapra beetle is a high-priority exotic invertebrate pest in many countries requiring a rapid quarantine/biosecurity response when incursions occur. To address this, we developed a novel Khapra LAMP (loop-mediated isothermal amplification) assay using a portable real-time fluorometer and an additional 18S ribosomal DNA (18S) insect control LAMP assay for confirmation of the presence of insect DNA. Both LAMP tests can be performed either in a portable real-time fluorometer or using simple, visual colorimetric technique. RESULTS: Both the Khapra and 18S LAMP tests amplify positive samples within ≤ 25 min, with an anneal derivative temperature of 77.7 ± 0.7 °C for Khapra LAMP test and 88.0 ± 1.0 °C for 18S. The new Khapra LAMP assay is sensitive to very low levels of DNA (1.02 × 10-6  ng µL-1 ). Additionally, we developed a gBlock double stranded DNA fragment for use as positive Khapra control with a different anneal derivative of 80 °C. Both assays are simple to use in the field and are capable of amplifying DNA from target beetles, even when samples are partially degraded which is typically found during surveillance activities. By screening a broad panel of Dermestidae species we demonstrate that our new assay is species-specific, with no detections of false positives. Also, we evaluated multiple DNA extraction methods, with both QuickExtract and HotSHOT extraction methods proving suitable for in-field use. CONCLUSION: The novel Khapra and 18S LAMP assays should improve speed, accuracy and confidence of detection of Khapra beetle at incursion points and aid rapid biosecurity responses in any country affected, especially as the assays described here are portable and easy to implement in the field conditions where resources are limited. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Besouros , Animais , Besouros/genética , Controle de Insetos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico
14.
Viruses ; 13(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808381

RESUMO

Globally, high-throughput sequencing (HTS) has been used for virus detection in germplasm certification programs. However, sequencing costs have impeded its implementation as a routine diagnostic certification tool. In this study, the targeted genome sequencing (TG-Seq) approach was developed to simultaneously detect multiple (four) viral species of; Pea early browning virus (PEBV), Cucumber mosaic virus (CMV), Bean yellow mosaic virus (BYMV) and Pea seedborne mosaic virus (PSbMV). TG-Seq detected all the expected viral amplicons within multiplex PCR (mPCR) reactions. In contrast, the expected PCR amplicons were not detected by gel electrophoresis (GE). For example, for CMV, GE only detected RNA1 and RNA2 while TG-Seq detected all the three RNA components of CMV. In an mPCR to amplify all four viruses, TG-Seq readily detected each virus with more than 732,277 sequence reads mapping to each amplicon. In addition, TG-Seq also detected all four amplicons within a 10-8 serial dilution that were not detectable by GE. Our current findings reveal that the TG-Seq approach offers significant potential and is a highly sensitive targeted approach for detecting multiple plant viruses within a given biological sample. This is the first study describing direct HTS of plant virus mPCR products. These findings have major implications for grain germplasm healthy certification programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.


Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de Plantas/genética , Austrália , Metagenômica , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Potyvirus/genética
15.
Viruses ; 12(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334037

RESUMO

Recent outbreaks of African swine fever virus (ASFV) have seen the movement of this virus into multiple new regions with devastating impact. Many of these outbreaks are occurring in remote, or resource-limited areas, that do not have access to molecular laboratories. Loop-mediated isothermal amplification (LAMP) is a rapid point of care test that can overcome a range of inhibitors. We outline further development of a real-time ASFV LAMP, including field verification during an outbreak in Timor-Leste. To increase field applicability, the extraction step was removed and an internal amplification control (IAC) was implemented. Assay performance was assessed in six different sample matrices and verified for a range of clinical samples. A LAMP detection limit of 400 copies/rxn was determined based on synthetic positive control spikes. A colourmetric LAMP assay was also assessed on serum samples. Comparison of the LAMP assay to a quantitative polymerase chain reaction (qPCR) was performed on clinical ASFV samples, using both serum and oral/rectal swabs, with a substantial level of agreement observed. The further verification of the ASFV LAMP assay, removal of extraction step, implementation of an IAC and the assessment of a range of sample matrix, further support the use of this assay for rapid in-field detection of ASFV.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Surtos de Doenças , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Feminino , Masculino , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/normas , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Suínos , Viremia
16.
Sci Rep ; 10(1): 9554, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533005

RESUMO

LAMP assays are targeted molecular tests for the rapid detection of species in the laboratory and field. We developed a LAMP assay for an economically important fruit fly species, Queensland fruit fly, Bactrocera tryoni. This assay was assessed against a broad panel of target and non-target species and found to be specific, only amplifying the target species and closest relatives, in a portable real-time fluorometer (Genie III) in under 15 minutes with an anneal derivative temperature of 82.5 oC. The assay is sensitive to low levels of target DNA (>0.016 ng/µl), performing equally to the existing qPCR test. To enable retention of a physical voucher specimen, for potential morphological confirmation of LAMP results, a novel whole-specimen non-destructive DNA extraction method was developed, suitable for LAMP in the field. The stability of DNA extraction and LAMP reagents was tested under simulated and actual field conditions and shown to be robust. Our new assay now provides a portable molecular tool for the detection of this significant tephritid fruit fly pest species of biosecurity/quarantine concern. This has already proven invaluable for in-field diagnostics, providing real-time support influencing immediate actions, with negative results allowing the release of fruit produce, and positive results initiating fruit fly control measures.


Assuntos
Bioensaio/métodos , Tephritidae/genética , Animais , Quarentena/métodos , Especificidade da Espécie
17.
Plant Dis ; 104(7): 1969-1978, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484421

RESUMO

Melon necrotic spot virus (MNSV) was detected in field-grown Cucumis melo (rockmelon) and Citrullus lanatus (watermelon) plants in the Sunraysia district of New South Wales and Victoria, Australia, in 2012, 2013, and 2016, and in two watermelon seed lots tested at the Australian border in 2016. High-throughput sequencing was used to generate near full-length genomes of six isolates detected during the incursions and seed testing. Phylogenetic analysis of the genomes suggests that there have been at least two incursions of MNSV into Australia and none of the field isolates were the same as the isolates detected in seeds. The analysis indicated that one watermelon field sample (L10), the Victorian rockmelon field sample, and two seed interception samples may have European origins. The results showed that two isolates (L8 and L9) from watermelon were divergent from the type MNSV strain (MNSV-GA, D12536.2) and had 99% nucleotide identity to two MNSV isolates from human stool collected in the United States (KY124135.1, KY124136.1). These isolates also had high nucleotide pairwise identity (96%) to a partial sequence from a Spanish MNSV isolate (KT962848.1). The analysis supported the identification of three previously described MNSV genotype groups: EU-LA, Japan melon, and Japan watermelon. To account for the greater diversity of hosts and geographic regions of the MNSV isolates used in this study, it is suggested that the genotype groups EU-LA, Japan melon, and Japan watermelon be renamed to groups I, II, and III, respectively. The divergent isolates L8 and L9 from this study and the stool isolates from the United States formed a fourth genotype group, group IV. Soil collected from the site of the Victorian rockmelon MNSV outbreak was found to contain viable MNSV and the virus vector, a chytrid fungus, Olpidium bornovanus (Sahtiyanci) Karling, 18 months after the initial MNSV detection. This is a first report of O. bornovanus from soil sampled from an MNSV-contaminated site in Australia.


Assuntos
Doenças das Plantas , Sementes , Japão , Filogenia , Tombusviridae , Vitória
18.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273353

RESUMO

The near-complete genome sequence of the original Carrot virus Y (CarVY) type isolate (CarVY-Vic) collected in 1999 in Victoria, Australia, and a near-complete genome sequence from an isolate collected in 2019 from the same region (CarVY-2-22) were determined following deep sequencing. The two CarVY genome sequences shared 98% nucleotide identity.

19.
Genes (Basel) ; 11(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316258

RESUMO

Potatoes are an important human food crop, but have a number of yield limiting factors, including disease susceptibility. Potato virus Y (PVY) is found worldwide, and is one of the main virus problems for potato growers. PVY is transmitted by aphids and mechanically by machinery, tools and people, and symptoms are variable across cultivars and strains, including being symptomless in some cultivars. Therefore, breeding resistant cultivars is the best way to control this virus. This study phenotypically screened 74 of the main commercial cultivars and a few other select cultivars grown in Australia, in order to identify sources of resistance to PVY. The cultivars were screened against PVYO and PVYNTN, with 23 out of 71 resistant to PVYO and 13 out of 74 resistant to PVYNTN, and all these 13 were resistant to both strains. When the phenotypic screening was compared to the results listed on the European Cultivated Potato Database, the majority of results were found to be consistent. We then evaluated three molecular markers RYSC3, M45, and STM0003 for the extreme resistance genes Ryadg and Rysto, to validate the usefulness of the markers for marker-assisted selection (MAS) on Australian germplasm. The degree of correlation between the resistance phenotypes and the RYSC3, M45, and STM0003 markers for Ryadg and Rysto conferred PVY resistance was determined. Three cultivars amplified the RYSC3 marker, while the M45 marker amplified the same 3 and an additional 9. Of the 12 cultivars, 11 phenotyped as resistant, but 1 was susceptible. The STM0003 marker was amplified from only 2 cultivars that both had resistant phenotypes. The RYSC3, M45, and STM0003 markers were therefore able to identify all the 13 cultivars that were resistant to both strains of PVY. Therefore, these markers will enable the identification of genotypes with resistance to PVY, and enable PVY resistant parents to be used for the development of superior progeny; these genetic markers can be used for MAS in the Australian potato breeding program.


Assuntos
Resistência à Doença/genética , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyvirus/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/virologia , Resistência à Doença/imunologia , Genótipo , Humanos , Fenótipo
20.
Viruses ; 12(2)2020 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102210

RESUMO

One hundred Prunus trees, including almond (P. dulcis), apricot (P. armeniaca), nectarine (P. persica var. nucipersica), peach (P. persica), plum (P. domestica), purple leaf plum (P. cerasifera) and sweet cherry (P. avium), were selected from growing regions Australia-wide and tested for the presence of 34 viruses and three viroids using species-specific reverse transcription-polymerase chain reaction (RT-PCR) or polymerase chain reaction (PCR) tests. In addition, the samples were tested using some virus family or genus-based RT-PCR tests. The following viruses were detected: Apple chlorotic leaf spot virus (ACLSV) (13/100), Apple mosaic virus (ApMV) (1/100), Cherry green ring mottle virus (CGRMV) (4/100), Cherry necrotic rusty mottle virus (CNRMV) (2/100), Cherry virus A (CVA) (14/100), Little cherry virus 2 (LChV2) (3/100), Plum bark necrosis stem pitting associated virus (PBNSPaV) (4/100), Prune dwarf virus (PDV) (3/100), Prunus necrotic ringspot virus (PNRSV) (52/100), Hop stunt viroid (HSVd) (9/100) and Peach latent mosaic viroid (PLMVd) (6/100). The results showed that PNRSV is widespread in Prunus trees in Australia. Metagenomic high-throughput sequencing (HTS) and bioinformatics analysis were used to characterise the genomes of some viruses that were detected by RT-PCR tests and Apricot latent virus (ApLV), Apricot vein clearing associated virus (AVCaV), Asian Prunus Virus 2 (APV2) and Nectarine stem pitting-associated virus (NSPaV) were also detected. This is the first report of ApLV, APV2, CGRMV, CNRNV, LChV1, LChV2, NSPaV and PBNSPaV occurring in Australia. It is also the first report of ASGV infecting Prunus species in Australia, although it is known to infect other plant species including pome fruit and citrus.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Prunus/virologia , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Vírus de Plantas/isolamento & purificação , Viroides/genética , Viroides/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...